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Abstract 

John Carroll's three-stratum theory—and the decades of research behind its development—are 

foundational to the contemporary practice of intellectual assessment. The present study addresses 

some limitations of Carroll’s work: specification, reproducibility with more modern methods, 

and interpretive relevance. We re-analyzed select datasets from Carroll's survey of factor analytic 

studies using confirmatory factor analysis as well as modern indices of interpretive relevance. 

For the majority of the datasets, we found that Carroll likely extracted too many factors 

representing Stratum II abilities. Moreover, almost all of factors representing Stratum II abilities 

had little-to-no interpretive relevance above and beyond that of general intelligence. We 

conclude by discussing implications of this research and some directions for future research. 

Keywords: John Carroll, Intelligence, Three-stratum theory, Replication study 
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Revisiting Carroll’s Survey of Factor-Analytic Studies: Implications for the Clinical 

Assessment of Intelligence 

John Carroll’s (1993) three-stratum (3S) theory of intelligence has been widely lauded 

(e.g., Lubinski, 2000, 2004). People have compared it to Dmitri Mendeleev’s periodic table 

(Horn, 1998), Isaac Newton’s Mathematical Principles of Natural Philosophy (McGrew, 2005), 

and a composer’s magnum opus (Jensen, 2004). 3S theory is part of the Spearman-Holzinger-

Burt "British" school that prioritizes a single general ability over other abilities and posits that 

cognitive abilities directly influence all tasks that require any aspect of cognitive functioning 

(Carroll & Schweiker, 1951). Like other theories in the British tradition, 3S is hierarchical with 

each stratum representing psychological abilities of an increasing level of abstraction. Stratum I 

(S1) consists of abilities that closely correspond to the surface-level characteristics of mental 

tasks (e.g., induction, sequential reasoning, verbal ability, and visualization). Stratum II (S2) 

consists of broad abilities that differ in the extent to which they are related to the content of test 

stimuli, cognitive processing demands, or response demands. There are eight S2 abilities: 

crystallized intelligence (Gc), fluid intelligence (Gf), broad retrieval ability (Gr), broad cognitive 

speediness (Gs), processing speed (Gt), broad auditory perception (Gu), broad visual perception 

(Gv), general memory and learning (Gy). Stratum III (S3) reflects a highly abstract and general 

ability (g) that affects all tasks requiring cognitive ability. 

Carroll was not a clinician, so his primary purpose in creating the 3S theory was to 

"identify, catalog, and interpret the known abilities, without regard for their importance or 

validity" (1993, p. 693). He extrapolated about some possible clinical uses, but they were 

primarily centered on test construction. Nonetheless, very soon after publishing his work it 
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became a cornerstone of clinical intellectual assessment—a role it has held on to for almost two 

decades (Keith & Reynolds, 2010).  

The rapid infusion of Carroll's work into clinical practice was largely due to two major 

events. The first event was the development of the Cattell-Horn-Carroll (CHC) theory of 

cognitive abilities (McGrew, 2005). CHC is an integration of Gf-Gc theory (Cattell, 1943; Horn 

& Cattell, 1966) with 3S theory to help clinicians provide explanations of how and why people 

differ in their various cognitive abilities (Schneider & McGrew, 2012). Second, the publication 

of the third edition of the Woodcock-Johnson (WJ III; Woodcock, McGrew, & Mather, 2001). 

Not only was the WJ III the first test to be aligned with CHC theory, but also its technical 

manual provided the first comprehensive publication about it.    

Distinctions from Cattell-Horn-Carroll Theory 

While 3S theory shares many similarities with CHC theory, there are important 

distinctions. First, S1 and S2 abilities differ somewhat with respect to number and 

interpretation— likely due to the theories' different purposes, authors, and data used for their 

development. Initially, CHC contained 10 S2 abilities (compared to the 8 in 3S), but this 

increased to 16 and now includes 18 (Schneider & McGrew, in press). Moreover, the definition 

of some of the S2 abilities have changed as well (Beaujean, in press).  

Second, Carroll was adamant that 3S aligned with the British tradition, so can be 

represented by a bifactor model (Beaujean, 2015). In fact, Carroll (1993) heavily utilized the 

Schmid-Leiman (1957) procedure to approximate bifactor structure.  Conversely, CHC theory is 

more aligned with the American/Thurstonian tradition, so is better represented by a higher-order 

model. We discuss this more in the Factor Model section in the current manuscript, but there are 

two key differences between these models. First, in a bifactor model g is orthogonal to all other 
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factors; thus, the group factors represent effects that are independent of g. In a higher-order 

model, g represents what is common to the group factors. Second, in a bifactor model, all 

common factors—including the general factor—have direct effects on measured abilities. In a 

higher-order model, since g is defined by group factors, it only has indirect effects on mental 

tasks meaning that lower-order factors fully mediate the effects of g on all mental tasks (Gignac, 

2008).  

A third difference between 3S and CHC is the importance placed on g. Carroll (2012) 

believed Spearman's two-factor theory of intelligence was essentially correct, but was incomplete 

since Spearman was hesitant about interpreting any broad ability. Thus, g is an indispensable 

aspect of 3S. In contrast, CHC theory is ambiguous about the role of g (Cucina & Howardson, 

2017). While g is included, users are encouraged to ignore it if they do not believe that g has 

merit, particularly in applied clinical assessment contexts (Schneider & McGrew, 2012).  

Despite the aforementioned differences, both Carroll's research and his 3S theory are 

used as pivotal support for CHC theory (e.g., Flanagan, Alfonso, & Ortiz, 2012; McGrew, 2005, 

2009; Ortiz, 2015; Schneider & Flanagan, 2015; Schneider & McGrew, 2012). Thus, there is a 

need for clarity about how Carroll’s findings relate to CHC. Such an investigation is especially 

appropriate given the numerous examples from psychology's “reproducibility crisis” (Pashler & 

Wagenmakers, 2012) that illustrate the benefits of reevaluating the evidence-base for widely 

accepted theories—or recommended application of those theories in practice—in light of new 

developments. One can only have confidence in a theory when it has been subjected to a ‘risky’ 

empirical test with due consideration to rival or alternative explanations for the data (Meehl, 

1990; Platt, 1964; Popper, 2002). 
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Shortcomings of Carroll's Research 

Carroll acknowledged important limitations of his research.  

Much work remains to be done in the factor-analytic study of cognitive abilities. The map 

of abilities provided by the three-stratum theory undoubtedly has errors of commission 

and omission, … [it] needs to be further validated by acquiring information about the 

importance and relevance of the various abilities it specifies. (Carroll, 2012, p. 889) 

These limitations are often overlooked, however, in the effort to use his research to support the 

development of clinical tests or score interpretation systems. Three major limitations of 3s 

theory, which are detailed below, are inadequate specification of S1 and S2 factors, the need to 

replicate the factors using more modern methods, and lack of clarity about the factor model. 

Inadequate specification.  No single dataset that Carroll (1993) evaluated had sufficient 

breadth to evaluate fully abilities at all three strata of 3S theory. In fact, the majority of the 

datasets he used only contained a handful of S1 abilities and very few S2 abilities. Moreover, 

often these abilities were factorially complex (i.e., non-negligible cross-loadings). Thus, Carroll 

wrote that many of the factors representing 3S abilities are "inadequately specified, and many 

aspects of the three-stratum theory need to be tested and refined" (p. 688).  

Notably, even though Carroll (1993) developed 3S based on factor-analysis, he did not 

determine the abilities' strata based on a factor order. Instead, he used his judgement of the 

ability's degree of generality. This was largely because his datasets contained a variety of breadth 

in the measured variables. Thus, S2 abilities could emerge as either a first- or second-order 

factor, and g could emerge as a first-, second- or third-order factor in different datasets. While he 

provided a detailed explanation for his decisions, relying on such qualitative judgements raises 

the question of replicability. Would independent scholars derive the same conclusions with the 
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same data? Carroll himself even suggested that his findings should be viewed cautiously until 

others could verify his research.  

Being able to replicate his results—especially concerning S2 abilities—is important. 

Significantly under- or over-factoring datasets can bias factor loadings and distort interpretation 

(Comrey, 1978). Moreover, over-factoring can yield unnecessarily complex theories that contain 

components of little theoretical or practical import (Fabrigar, Wegener, MacCallum, & Strahan, 

1999), which some have argued is far too common in modern intelligence research (Frazier & 

Youngstrom, 2007). 

Replication with modern techniques. Carroll (1993) relied exclusively on exploratory 

factor analysis (EFA) for all his original analyses because of its practicality, inexpensiveness, 

and ease of operation. Nonetheless, he recognized that his results need to be replicated using 

confirmatory techniques. In a few studies that followed his landmark study, he was able to utilize 

confirmatory factor analysis (CFA; Carroll, 1995, 1997, 2003). He concluded that the CFA 

results confirmed much of 3S, but also differed in important ways from what he found with his 

original EFAs. Thus, he suggested that the two methods should be used in combination (Carroll, 

1995). 

CFA has important characteristics that make it extremely useful when examining factor 

structure (Loehlin & Beaujean, 2016). Unlike EFA, common variance attributable to latent 

variables are partitioned from measurement error so that factor structure can be examined 

independent of these effects. Moreover, because CFA models are often over-identified, there are 

a variety of model-fit measures that can aid in a more accurate decision for factor retention than 

using EFA (Keith, Caemmerer, & Reynolds, 2015). Finally, stricter assumptions about relations 
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among measured and latent variables can be specified a priori, which allows for stronger sets of 

hypotheses to evaluate.  

Factor model clarity. When utilizing CFA as a confirmatory method, it is important to 

specify the models a priori. There are differing opinions about what model best represents the 3S 

theory, and Carroll himself was not always clear in his writings. In some places, the wording he 

used gives the impression that abilities at higher strata directly influence abilities at lower strata, 

but in other places he described the abilities at one stratum being independent of abilities at 

another stratum. To add to this confusion, in his EFA he performed high-order extraction of 

factors (when applicable), but then utilized an orthogonal transformation of the results to 

approximate a bifactor solution.  

To gain clarity on this issue, it is informative to examine some of his writing about 3S 

following the publication of his landmark study. For his CFA studies, (Carroll, 1995, 1997, 

2003), he always specified a bifactor model. Moreover, in his 1996 chapter he was very explicit 

that g should be ascribed primary importance in these models.  Carroll contended that it is best to 

study abilities that are orthogonal to each other— partialing out their covariance of factors at 

other orders —and that abilities at each stratum had direct effects on the measured variables. All 

of these attributes are best expressed through a bifactor model (Beaujean, 2015). Thus, we 

believe a bifactor model best represents Carroll's intention in developing 3S theory. 

Purpose of the Current Study 

The present study is aimed at addressing some of the limitations of Carroll’s (1993) work 

as well as investigating the support—or lack thereof—for CHC theory. The first aim was to 

better understand the specification and replicability of Carroll's S2 abilities using CFA with 

select datasets from Carroll's original factor analytic survey. Although much has been written 
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about the reproducibility of psychological research in the past decade (e.g., Funder et al., 2014), 

little has focused on factor-analytic research. Yet, replication of factors—across datasets and 

methods—is paramount to the interpretation and use of factor analytic studies (Gorsuch, 2003; 

Osborne & Fitzpatrick, 2012). 

The second aim of this study was to evaluate the interpretive relevance of test scores 

believed to reflect the factors representing S2 and S3 abilities. A test-derived score with 

interpretive relevance: (a) provides a good representation of the construct targeted for 

measurement; (b) is distinct from conceptually similar constructs; (c) is likely to be replicable 

across datasets and methods; and (d) has adequate unique, reliable variance such that it is 

statistically distinguishable from test-derived scores reflecting conceptually similar constructs 

(McGill, 2017).   

We examined interpretive relevance because of the ubiquitous practice of interpreting 

and utilizing test scores measuring S2 abilities in applied psychology (e.g., Schrank, McGrew, & 

Mather, 2014; Wechsler, 2014). We believe that if clinicians are going to use test scores for 

applied purposes such as diagnosis and treatment planning, then there needs to be evidence to 

support the interpretation of these test scores (AERA/APA/NCME, 2014). Factor analysis can 

provide evidence indicating an ability exists, but such evidence is insufficient to demonstrate that 

scores reflecting this ability have interpretive relevance. Carroll (1993) was concerned mainly 

about knowing what cognitive abilities exist, not whether such abilities are clinically useful. 

Thus, he largely eschewed the topic of interpretive relevance and left such questions for others to 

investigate. 

 

 



REVISITING CARROLL 10 

Method 

Inclusion Criteria 

We initially selected the 18 datasets from which Carroll (1993) originally extracted 

multiple factors representing S2 abilities (see Table 15.3, pp.585–589). We used these because 

his results suggested these datasets contain a sufficient number of measured variables and 

adequate variance for identifying multiple S2 abilities.  

For each of the identified studies, we obtained the original manuscript. Unfortunately, 

some of these manuscripts either did not supply covariances or did not supply enough 

information to convert the supplied correlation matrix into a covariance matrix. While 

correlation matrices are appropriate for EFA studies, using them in CFA can be problematic 

(Cudek, 1989). Thus, we limited our study to a subset of nine studies from Carroll’s (1993) 

project for which we could input a covariance matrix. For two of the studies (Sung & Dawis, 

1981; Thurstone & Thurstone, 1941), some of our models did not converge—likely due to 

idiosyncratic characteristics of the cognitive tasks or sample. Instead of employing a lot of post 

hoc tinkering to force convergence, we just report results from the seven studies that did not 

exhibit estimation troubles. 

Descriptive information regarding the participants in these studies is presented in Table 1. 

Of note, the majority of these studies used non-representative samples (e.g., prisoners, enlisted 

military personnel). The number of cognitive variables used in these studies range from 19–48, 

with an average of 27 (SD = 10.5). Detailed descriptions of the variables in these studies are 

provided in the original publications.  
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Data Analysis 

Confirmatory factor analysis. We used Mplus (Version 8.0; Muthén & Muthén, 1998-

2017) for all model comparisons. For each dataset, we systematically fit a series of bifactor 

models starting with Spearman's two-factor model. Next, we sequentially fit models containing 

one additional group factor representing a S2 ability. If adding a group factor yielded significant 

improvement of model fit, then we retained the group factor. We subsequently repeated this 

process for each additional group factor.  

We used the following indices to evaluate model fit: comparative fit index (CFI), root 

mean square error of approximation (RMSEA), standardized root mean square residual (SRMR), 

and Bayesian information criterion (BIC). The CFI, RMSEA, and SRMR have metrics that are 

directly interpretable, but the BIC does not. To facilitate interpretation of the BIC, we 

transformed the values to BIC weights (see formulae in Wagenmakers and Farrell, 2004). These 

weights range from 0–1 and can be interpreted as the probability that a candidate model is the 

best model among the set of candidate models examined.  

Interpretative relevance. To examine interpretative relevance, we examined model-

based indices of: (a) the dimensionality of the datasets, (b) the interpretability of factors, and (c) 

reliability of test-derived scores (Rodriguez, Reise, & Haviland, 2016a). To evaluate 

dimensionality, we used three indices: (a) percentage of uncontaminated correlations (PUC; 

Bonifay, Reise, Scheines, & Meijer, 2015); (b) explained common variance (ECV; Reise, Moore, 

& Haviland, 2010); and (c) average relative parameter bias (ARPB). PUC is an index of the 

extent to which covariance terms reflect a general factor and are uncontaminated by variance 

from group factors, with values ≥.80 suggesting unidimensionality (Reise, Scheines, Widaman, 

& Haviland, 2013). ECV is an index of general factor strength. As a frame of reference, values 
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of .80 and .70 indicate that ignoring group factors would result in bias of less than 5% and 10%, 

respectively, in estimating a unidimensional general factor. ARPB is an estimate of the 

difference between a measured variable's factor loading in a unidimensional model and its g 

loading in a bi-factor model. Values < .15 indicate an acceptable amount of bias in interpreting a 

multidimensional dataset as unidimensional (Muthén, Kaplan, & Hollis, 1987). The 

aforementioned criteria for dimensionality can be used to inform decisions regarding the 

retention of factors, providing a safeguard against both under-factoring and over-factoring. 

To evaluate the interpretability of the S2 ability factors, we examined factor determinacy 

(Beauducel, 2011) and construct replicability (H; Hancock & Mueller, 2001). Factor determinacy 

values reflect the uniqueness of factor scores. Values closer to 1.0 (generally .90 or higher) 

indicate that test-derived scores reflect individual differences in performance and may be of 

value for subsequent analyses or applied assessment purposes.  H is a measure of how well the 

observed variables represent their intended constructs (i.e., g and S2 abilities) as well as the 

extent to which these factors are likely to replicate across studies. Values >.80 are usually 

considered indicative of a well-defined latent variable that is likely to replicate across datasets 

and methods. 

Last, to evaluate the reliability of test-derived scores representing their latent constructs 

we calculated omega (ω; Lucke, 2005), as well as omega hierarchical (ωH) and omega 

hierarchical subscale (ωHS).  ωH and ωHS, respectively, reflect the reliability of a general factor 

and the unique reliability of group factors after removing the variance due to a general factor 

(Reise, 2012; Rodriguez, Reise, & Haviland, 2016b). If factors do not possess sufficient unique, 

reliable variance then it is not possible to make reliable distinctions between them when 

interpreting profiles of scores. Moreover, given that measures of cognitive ability tend to be 
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strongly correlated low ωHS values (e.g., < .30) portend limited incremental validity beyond g 

for predicting outcomes such as academic achievement or occupational performance. 

Results 

 CFA results are presented in Table 2 for each study. In Table 3 we provide a summary of 

how the results comport with Carroll's (1993) original EFA results. In 43% of the studies, all the 

S2 abilities proposed by Carroll's analysis were confirmed, while in 57% of the studies we did 

not find support for at least one S2 ability. Thus, in over half of the studies we found that Carroll 

likely extracted too many S2 ability factors.  

 In Table 4 we provide interpretive relevance indices. g appears to adequately explain 

most of the individual differences in performance for 57% of the studies (i.e., Fogarty, 1987; 

Hakstian & Cattell, 1978; Horn & Stankov, 1982; Undheim, 1981), although a case could be 

made for possibly interpreting some S2 abilities in a few of the datasets. Specifically, broad 

auditory perception (Gu) may have some interpretive relevance in Fogarty's (1987) data, and 

broad visual perception (Gv) may have some relevance in Hakstian and Cattell's (1978) data. 

A multidimensional structure appears to be needed for 29% of the datasets (i.e., Christal, 

1958; Gustafsson, 1984). For Christal's data, general memory and learning (Gy) appears to have 

some interpretative relevance, while fluid reasoning (Gf) appears to have some interpretative 

relevance in Gustafsson 's data.  

The data from Horn (1965) are somewhat equivocal. PUC suggests a unidimensional 

interpretation, but the ARPB and ECV do not. Moreover, the ωHS value for processing speed 

(Gs) is relatively high and very close to the ω and ωH values for g. Thus, it is indeterminate as to 

whether g adequately explains individual differences in performance, or if other abilities might 

also be relevant for this data. 
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Discussion 

 Three-stratum (3S) theory was developed by an eminent factor analyst based on a large 

body of factor-analytic research. Factor analytic results are constrained by the quality of datasets 

analyzed, however, and most of the studies Carroll (1993) used were from non-representative 

convenience samples (e.g., prisoners, military personnel) or were minimally multi-dimensional.  

 For our study, we purposely selected the datasets from which Carroll (1993) identified 

the most second-order factors representing S2 abilities; of these, we were able to re-analyze 

seven. For the majority of the datasets, we found that Carroll likely extracted too many factors 

representing S2 abilities. Moreover, we found that almost all of the S2 ability factors we could 

replicate had little-to-no interpretative relevance. Stated differently, g was the only ability that 

was consistently found to influence the measured variables and be clinically meaningful across 

all the datasets. 

Interpretative Relevance  

 Although our results imply that the 3S theory may not be as parsimonious as it could be, 

this is not necessarily surprising. Carroll was not interested in model parsimony, factor 

importance, or practical applications as much as he was in identifying all known human 

cognitive abilities regardless of their importance. What is surprising is the emphasis clinicians 

and clinical researchers have placed on S2 abilities and their citation of Carroll's research as 

supporting this idea. A prime example of this is cross-battery assessment (Flanagan, Alfonso, 

Ortiz, 2012). 

 Cross-battery assessment was developed to enable clinicians to conduct intellectual 

assessments that "approximate the total range of cognitive and academic abilities and 

neuropsychological processes more adequately than what is possible with most collections of co-
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normed tests" (Flanagan et al., 2012, p. 459). In other words, it is an approach to intellectual 

assessment that focuses on S2 (and some S1) abilities while all-but-excluding g. It has developed 

a large following since its initial development and currently many states allow—and some even 

require—examining the pattern of strengths and weaknesses in S2 abilities as part of their 

learning disability eligibility criteria (Maki, Floyd, & Roberson, 2015). 

 Although the developers of the cross-battery approach note its foundations in CHC 

theory, they cite Carroll's work ubiquitously as supporting the idea that clinical assessment 

should focus on S2 and S1 abilities. We do not disagree that S1 and S2 abilities exist—in fact, 

our re-analyses were able to replicate many of the same S2 abilities as Carroll (1993) found. At 

the same time, however, our study lends little credence to the notion that Carroll's data support 

the clinical interpretation of abilities other than g. Since we selected the datasets from Carroll's 

original study that had the highest likelihood of supporting of S2 abilities, we believe this 

conclusion probably applies to the entirety of Carroll's catalog of studies.  

 It could be argued that Carroll's (1993) datasets were not sufficiently broad to capture the 

actual importance of S2 abilities. Instead, a more rigorous examination would require collecting 

data on all the S2 abilities from a single sample, such as those from the norming data of the third 

and fourth editions of the Woodcock-Johnson cognitive abilities tests (Woodcock et al., 2001, 

Schrank et al., 2014). The authors of these tests designed them to measure many of the S2 

abilities in CHC theory, which also encompasses most of the S2 abilities in the 3S theory. As 

with the results of the present study, structural analyses of the Woodcock-Johnson raise concerns 

about the clinical interpretability of the scores representing S2 abilities in those datasets (e.g., 

Dombrowski, 2013; Dombrowski, 2014a, 2014b; Dombrowski, 2015a; Dombrowski, McGill & 

Canivez, 2017a, 2017b; Dombrowski & Watkins, 2013).  
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 Another argument could be made that factor analytic studies are not sufficient to examine 

interpretive relevance. Instead, studies need to be conducted that examine the diagnostic or 

instructional utility of the S2 abilities. In the two decades since Carroll published his 

masterwork, there is very limited evidence supporting diagnostic or treatment utility of 

interpreting scores representing S2 abilities (Kranzler, Floyd, Benson, Zaboski & Thibodaux, 

2016; McGill & Busse, 2017). Carroll (2000) himself even noted this: 

What I find lacking is evidence of the value and predictive validity of the diagnoses and 

recommendations that a school psychologist might make on the basis of such a [cognitive 

profile] system (p. 454). 

Clinical Utility 

 Incremental validity is a crucial issue regarding the utility of scores derived from tests of 

cognitive abilities. Incremental validity is supported when test scores improve prediction of 

important external criteria beyond other scores on the same test or scores on other established 

measures (Hunsley & Meyer, 2003). Although possessing reliable specific variance is not 

sufficient for incremental validity, it is a necessary condition for improving the prediction of 

external criteria beyond g. Using some of Carroll's (1993) most multidimensional data, our 

results suggest that the factors representing S2 abilities account for minimal reliable variance in 

test performance beyond g. This, in turn, suggests few of these factors would display incremental 

validity. Moreover, the moderate-to-strong intercorrelations among these factors cause 

multicollinearity issues when examining the effects of these abilities outside of latent variable 

models (e.g., multiple regression analyses with observed test scores, interpreting profiles of 

cognitive strengths and weaknesses).  
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 Recently, Benson, Kranzler, and Floyd (2016) suggested that orthogonal factor scores can 

provide more precise representations of the targeted constructs than non-refined factor scores 

(i.e., scores calculated by simply summing scaled scores and assigning equal weights to all 

subtest scores that contribute to a composite) and maintain close correspondence with the 

cognitive–achievement relations observed for latent variables. Results from the present study 

support the use of some factor scores in subsequent analyses outside of latent variable models. 

Following the recommendation of Gorsuch (1983), factor score estimates should only be used 

when the factor determinacy index value exceeds .90. Using this criterion, it would be 

appropriate to use factor scores for about 11% of the S2 factors identified in this study. Although 

research (Benson et al., 2016, Kranzler, Benson, & Floyd, 2015) suggests that a few S2 abilities 

display incremental validity in predicting important outcomes such as academic achievement, 

evidence strongly supports emphasizing g when interpreting individual differences in test 

performance and predicting academic achievement.   

Limitations 

 Our study is limited by some of the same factors that limited Carroll’s work, particularly 

the quality of datasets examined. Also, we only analyzed a small subset of the studies Carroll 

analyzed—although we carefully selected them in an effort to maximize the identification of S2 

abilities. While it is unlikely that results more supportive of these abilities would emerge from 

the studies we did not examine, it is possible. Finally, we must note that the existence of S2 

abilities in addition to g is strongly supported by improvement in model fit. This is not 

necessarily a limitation of our work—we simply note this because it could be argued that scores 

representing these abilities should be interpreted based on evidence of improved model fit. As 

we have repeatedly stated throughout this article, the fact that an ability exists is not sufficient 
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evidence of the ability's clinical importance. Even interpretive relevance is insufficient , since a 

score may have interpretive relevance yet lack utility for intended purposes such as diagnosis or 

improving treatment outcomes. Meaningful interpretation of test scores also requires evidence to 

support the relevance and utility of these scores for specific purposes in particular applied 

settings (AERA/APA/NCME, 2014; Messick, 1995).   

Future Directions  

 Despite the absence of validity evidence to support score interpretations and uses, 

practitioners are routinely encouraged to assess S2—and even S1—abilities. This encouragement 

comes from both test publishers and general score interpretation systems. Carroll (1993) 

questioned the fact that test manuals often emphasize the interpretation of S2 abilities over g, and 

wrote that Frank (1983) was essentially correct in stating: 

The Wechsler tests are like the dinosaur, too large, cumbersome and ill-fitted and 

awkward in the age in which they developed, unable to remain viable in a psychometric 

age which has passed it by in conceptualization. As with the dinosaur it is time for the 

Wechsler test to become extinct (p. 126). 

Although we do not necessarily espouse the sentiments of Frank, we do note that decision to 

align the fifth edition of Wechsler Intelligence Scale for Children with CHC theory has done 

little to improve the structural clarity of the instrument. Instead, it has increased its complexity 

(Canivez & Watkins, 2016; Dombrowski, Canivez & Watkins, 2017). Thus, perhaps it is time to 

revisit recent efforts to move the Wechsler scales and other clinical intelligence scales in the 

direction of permitting the interpretation of more S2 abilities. 

 Our results provide further evidence against the bloated nature of many current cognitive 

assessment practices that require administering many subtests and can take clinicians hours to 
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complete, score, and interpret (e.g., Glutting, Watkins, & Youngstrom, 2003). Such assessment 

and interpretive complexity is done to enable clinicians to de-emphasis g in lieu of emphasizing 

abilities at lower strata. We suggest that test users consider evidence of interpretative relevance 

and clinical utility before engaging in these activities. The administration of superfluous 

cognitive tasks that yield scores of dubious clinical value consumes time that would be better 

spent on evidence-based practices (Yates & Taub, 2003). It is possible that stronger evidence 

supporting interpretation of S1 and S2 abilities may emerge, but given results from more than a 

century of psychometric research it is unlikely that different results will occur without a 

precipitating change in the construction of cognitive tests and conceptualization of cognitive 

assessment (Cucina & Howardson, 2017). Instead, it is likely best to follow what the extant 

research supports, which is to focus test score interpretation mainly on measures of g (e.g., 

Canivez, 2013; Dombrowski, 2015b; Kranzler & Floyd, 2013).   
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Table 1 

Descriptive Information for Samples 

Study 

Number of 

Cognitive Variables n Mean Age (SD) % Female Description of Participants  

Christal (1958) 29 718 19.35 (2.32) 0* Newly enlisted Air Force personnel 

Fogarty (1987) 48 126 26 (9.9) ≈ 52 Australian adults/college students 

Gustafsson (1984) 20 981 12 (NA) ≈ 51 Swedish students from 50 6th grade classrooms 

Hakstian & Cattell (1978) 20 280 17 (.82) ≈ 51 Canadian students from six high schools 

Horn (1965) 31 297 27.6 (10.6) ≈ 28 Prisoners and persons on unemployment rolls 

Horn & Stankov (1982) 19 241 26 (NA) 0 Prisoners 

Undheim (1981) 21 148 15 (NA) ≈ 70 Norwegian eighth- and ninth-grade students 

Notes.* While sex is not mentioned in this article, the number of females is likely zero or near zero given enlistment policies at the 

time this study was completed.
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Table 2 

Summary of Model Comparisons  

Model BIC wi (BIC) Χ2 (df) CFI RMSEA (90% CI) SRMR 

Christal (1958) 

1. Single factor (g) 81616.27 <.001 3954.76 (377) .605 .115 (.112-.118) .098 

2. Bifactor (g + Gy) 80095.44 <.001 2328.70 (361) .783 .087 (.084-.091) .064 

3. Model 2 + Gv 79779.31 <.001 1979.69 (356) .821 .080 (.076-.083) .061 

4. Model 3 + Gc 79567.09 1.00* 1747.74 (353) .846 .074 (.071-.078) .058 

Fogarty (1987) 

1. Single factor (g) 29493.69 <.001 2287.09 (1080) .618 .094 (.089-.100) .092 

2. Bifactor (g + Gc) 29474.01 <.001 2214.21 (1069) .637 .092 (.087-.098) .090 

3. Model 2 + Gf 29438.40 <.001 2144.74 (1062) .657 .090 (.084-.095) .089 

4. Model 3 + Gv 29368.44 <.001 2050.60 (1057) .658 .086 (.081-.092) .087 

5. Model 4 + Gu 29215.64 1.00* 1859.11 (1049) .743 .078 (.072-.084) .083 

Gustafsson (1984) 

1. Single factor (g) 49663.10 <.001 3873.85 (170) .628 .149 (.145-.153) .093 

2. Bifactor (g + Gv) 48946.65 <.001 3109.18 (163) .704 .136 (.132-.140) .086 

3. Model 2 + Gf 48219.50 <.001 2375.15 (162) .778 .118 (.114-.122) .082 

4. Model 3 + Gc 47333.46 1.00* 1440.89 (155) .871 .092 (.088-.096) .060 

Hakstian & Cattell (1978) 

1. Single factor (g) 32084.71 <.001 367.06 (170) .802 .064 (.055-.073) .062 

2. Bifactor (g + Gf) 32055.40 <.001 309.58 (165) .854 .056 (.046-.056) .057 

3. Model 2 + Gr 32034.04 <.001 260.04 (160) .899 .047 (.037-.058) .051 

4. Model 3 + Gv 32022.83 <.001 243.20 (159) .915 .043 (.032-.054) .049 

5. Model 4 + Gc 32017.04 <.001 231.77 (158) .926 .041 (.029-.052) .048 

6. Model 5 + Gy 32008.71 1.00* 217.80 (157) .939 .037 (.024-.049) .047 

7. Model 5 + Gs 32018.55 .007 205.11 (153) .948 .035 (.021-.047) .045 

Horn (1965) 

1. Single factor (g) 24571.62 <.001 1838.17 (434) .568 .104 (.099-.109) .098 

2. Bifactor (g + Gf) 24541.82 <.001 1768.51 (427) .587 .103 (.098-.108) .098 

3. Model 2 + Gc 24467.90 <.001 1666.12 (422) .617 .100 (.095-.105) .097 

4. Model 3 + Gv 24414.55 <.001 1584.31 (417) .641 .097 (.092-.02) .096 

5. Model 4 + Gs 24251.97 1.00* 1393.26 (412) .698 .090 (.084-.095) .103 

6. Model 5 + Gr† - - - - - - 

Horn & Stankov (1982) 

1. Single factor (g) 11949.47 <.001 698.05 (152) .690 .122 (.113-.131) .097 

2. Bifactor (g + Gf) 11916.83 <.001 643.48 (148) .719 .118 (.109-.127) .095 

3. Model 2 + Gc 11815.84 <.001 515.05 (143) .789 .104 (.094-.114) .090 

4. Model 3 + Gv 11802.33 <.001 485.09 (140) .804 .101 (.091-.111) .087 

5. Model 4 + Gu 11761.79 .622 428.10 (137) .835 .094 (.084-.104) .078 

6. Model 5 + Gy 11763.37 .378 424.19 (136) .836 .094 (.084-.104) .077 
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Table 2 (Continued) 

Model BIC wi (BIC) Χ2 (df) CFI RMSEA (90% CI) SRMR 

Undheim (1981) 

1. Single factor (g) 18782.94 <.001 595.62 (189) .720 .121 (.110-.132) .091 

2. Bifactor (g + Gf) 18789.09 <.001 571.79 (183) .732 .120 (.109-.1310 .089 

3. Model 2 + Gv 18773.83 <.001 541.54 (180) .751 .116 (.105-.128) .087 

4. Model 3 + Gs 18687.80 <.001 435.52 (176) .821 .100 (.088-.112) .078 

5. Model 4 + Gc 18678.71 <.001 416.44 (174) .833 .097 (.085-.109) .074 

6. Model 5 + Gr 18647.17 1.00* 364.91 (170) .866 .088 (.076-.100) .069 

Notes. g = general intelligence, Gc = crystallized intelligence, Gf = fluid intelligence, Gr = broad 

retrieval ability, Gs = broad cognitive speediness, Gu = broad auditory ability, Gv = broad visual 

perception, Gy = general memory and learning. *Model was identified as best among the set of 

alternatives tested.  †Model could not be identified as it was based on a single indicator/observed 

variable.
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Table 3 

Stratum Two Abilities Agreement Between Carroll’s (1993) Exploratory Factor Analysis and Confirmatory Factor Analysis  

 Gc Gf Gr  Gs Gu Gv Gy 

Study EFA CFA EFA CFA EFA CFA EFA CFA EFA CFA EFA CFA EFA CFA 

Christal (1958) Y N - - - - - - - - Y N Y Y 

Fogarty (1987) Y Y Y Y - - - - Y Y Y Y - - 

Gustafsson (1984) Y Y Y Y - - - - - - Y Y - - 

Hakstian & Cattell (1978) Y Y Y Y Y Y Y N - - Y Y Y Y 

Horn (1965) Y Y Y Y Y N Y Y - - Y Y - - 

Horn & Stankov (1982) Y Y Y Y - - - - Y Y Y Y Y N 

Undheim (1981) Y Y Y Y Y Y Y Y - - Y Y - - 

Notes. EFA= Exploratory factor analysis, CFA=Confirmatory factor analysis, Y = factor supported, N = factor not supported, Gc = 

crystallized intelligence, Gf = fluid intelligence, Gr = broad retrieval ability, Gs = broad cognitive speediness, Gu = broad auditory 

perception, Gv = broad visual perception, Gy = general memory and learning. 
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Table 4 

Interpretive Relevance Indices  

Factor ARPB ECV FD H ω ωH ωHS PUC 

Christal (1958) 

Model .256 .569 - - - - - .660 

g - - .946 .925 .932 .704 - - 

Gc - - .791 .504 .869 .314 .361 - 

Gv - - .841 .679 .853 .341 .399 - 

Gy - - .901 .820 .875 .547 .625 - 

Fogarty (1987) 

Model .098 .710 - - - - - .889 

g - - .972 .959 .960 .903 - - 

Gc - - .804 .603 .913 .149 .163 - 

Gf - - .857 .585 .862 .237 .275 - 

Gu - - .901 .779 .847 .571 .674 - 

Gv - - .853 .661 .792 .482 .608 - 

Gustafsson (1984) 

Model .185 .595 - - - - - .853 

g - - .936 .907 .929 .800 - - 

Gc - - .901 .777 .902 .437 .484 - 

Gf - - .887 .667 .895 .552 .617 - 

Gv - - .886 .682 .843 .294 .349 - 

Hakstian & Cattell (1978) 

Model .098 .576 - - - - - .879 

g - - .902 .841 .850 .750 - - 

Gc - - .579 .310 .506 .269 .532 - 

Gf - - .708 .498 .752 .280 .372 - 

Gr - - .760 .534 .608 .337 .555 - 

Gv - - .657 .421 .441 .386 .875 - 

Gy - - .601 .328 .532 .284 .534 - 

Horn (1965) 

Model .776 .575 - - - - - .890 

g - - .946 .917 .880 .756 - - 

Gc - - .587 .299 .706 .168 .238 - 

Gf - - .844 .654 .863 .240 .278 - 

Gs - - .864 .723 .786 .562 .715 - 

Gv - - .836 .659 .815 .482 .591 - 
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Table 4 (Continued) 

Factor ARPB ECV FD H ω ωH ωHS PUC 

Horn & Stankov (1982) 

Model .059 .624 - - - - - .830 

g - - .939 .905 .901 .799 - - 

Gc - - .820 .593 .864 .246 .285 - 

Gf - - .857 .528 .801 .204 .255 - 

Gu - - .843 .702 .763 .308 .404 - 

Gv - - .696 .464 .543 .385 .709 - 

Undheim (1981) 

Model .059 .660 - - - - - .852 

g - - .954 .928 .938 .859 - - 

Gc - - .726 .426 .849 .185 .218 - 

Gf - - .604 .248 .852 .043 .050 - 

Gr - - .781 .576 .730 .446 .611 - 

Gs - - .842 .660 .816 .475 .582 - 

Gv - - .703 .411 .758 .278 .367 - 

Notes. g = general intelligence, Gc = crystallized intelligence, Gf = fluid intelligence, Gr = broad 

retrieval ability, Gs = broad cognitive speediness, Gu = broad auditory ability, Gv = broad visual 

perception, Gy = general memory and learning, ARPB = average relative parameter bias, ECV = 

explained common variance for g, PUC = percent of uncontaminated correlations, FD = factor 

determinacy, H = construct replicability, ω = model-based estimate of internal consistency for 

unit-weighted composite score, ωH = percentage of variance attributable to g, ωHS = percentage 

of unique, reliable variance for group factor that is independent of g.   


