Evidence-based assessment and Cognitive Profile Scatter: Clinical Acumen or Clinical Illusion?

Ryan J. McGill
The College of William and Mary

Author Note

Paper presented at the 2017 annual meeting of the Southeastern Psychological Association, Atlanta, GA.

Standardization data from the Kaufman Assessment Battery for Children, Second Edition (KABC-II). Copyright © 2004 NCS Pearson, Inc. Used with permission. All rights reserved.

Correspondence concerning this paper should be addressed to Ryan J. McGill, School of Education, The College of William and Mary, P. O. Box 8795 Williamsburg, VA 23187. E-Mail: rmcgill@wm.edu
Abstract

Within the professional literature, it is frequently suggested that interpretation of cognitive profile scatter may be useful for clinical and/or diagnostic decision-making. To wit, Hale and colleagues (2008) posit that cognitive scatter is a defining characteristic of learning disabilities and that individuals with learning disabilities may have higher levels of scatter than normal controls. To investigate the tenability of this claim, the present study employed diagnostic efficiency statistics and other psychometric methods for examining the utility of proposed diagnostic indicators (e.g., receiver operative characteristic curve, Bayesian nomogram) to determine the degree to which cognitive scatter accurately discriminated between individuals with and without a known learning disability diagnosis in the Kaufman Assessment Battery for Children-Second Edition (KABC-II; Kaufman & Kaufman, 2004a) normative sample. Results indicated that the diagnostic utility of cognitive profile scatter was no better than chance regardless of the level of scatter that was observed. The current negative results suggest that practitioners who interpret cognitive profile scatter may risk diagnostic overconfidence and in the case of SLD identification, unacceptable levels of false positive decisions attributable to error. Implications for evidence-based assessment in clinical and school psychology are discussed.

Keywords: Cognitive scatter, KABC-II, Evidence-based practice
Evidence-based assessment and Cognitive Profile Scatter: Clinical Acumen or Clinical Illusion?

The clinical use of scatter-analysis presage debate about its relationship to the nature of learning disorders (Kavale, 2002). Over 70 years ago, Rapaport, Gil, and Schafer (1945) proposed an interpretive framework that provided clinicians with a step-by-step process for analyzing intra-individual cognitive strengths and weaknesses based upon the belief that variability in cognitive test performance serves as a marker for the presence of behavioral pathology and a multitude of related approaches have been developed within the psychological assessment literature (e.g., Kaufman, 1994; Naglieri, 2000; Priftera & Dersh, 1993). In fact, it has been argued that Kaufman’s (1994) intelligent testing approach (which bears many similarities to the approach articulated by Rapaport et al., 1945), in which test users are encouraged to use the analytical powers of a “master detective” to interpret the meaning of significant scatter and its potential implications for the clinical utility of obtained scores, serves as a proverbial lingua franca for IQ test interpretation in clinical practice (McGill, 2016). To wit, the technical and interpretive manuals for all contemporary IQ tests encourage clinicians to engage in some variant of the intelligent testing approach when interpreting the scores provided by those instruments. Thus, it is not surprising that in a survey of 354 national certified school psychologists 70% of respondents reported that they found profile analysis to be clinically useful (Pfeiffer et al., 2000).

However, despite the popularity and perceived clinical utility of these methods in psychological science, their scientific support has long been found wanting. Previous investigations of several popular profile analytic methods (i.e., ipsative analysis, subtest-level profiles, individual cognitive weakness models) have consistently found that unique cognitive
profiles are psychometrically weak, lacking adequate reliability and validity for confidant clinical interpretation. (e.g., Macmann & Barnett, 1997; Watkins, 2000, 2003). More germane to the present discussion, in a quantitative meta-analysis, Kavale and Forness (1984) found that the average PIQ-VIQ difference for children with SLD was only 3.5 points, a difference found in approximately 79% of the normal population. As a result, it was concluded that scatter was of “little value in LD diagnosis” (p. 139).

In spite of these findings, proponents of scatter-based methods continue to advance claims that the interpretation of intra-individual scatter is clinical useful and that the mere presence of scatter renders some composite scores (i.e., FSIQ) invalid (Canivez, 2013; McGill, 2016). As an example, Hale and colleagues (2008) suggest that cognitive scatter is a defining characteristic of individuals with academic disorders, noting that individuals with learning disabilities typically have higher levels of scatter when compared to normal controls. Following this logic, it is hypothesized that higher and/or statistically significant levels of cognitive scatter may serve as a diagnostic sign for the diagnosis of academic disorders (see Flanagan and Alfonso, 2010 for a review of several diagnostic models that align with this premise). This is an empirical question that can be addressed using a diagnostic utility approach (Wiggins, 1988).

According to Hunsley and Mash (2007), evidence-based assessment (EBA) emphasizes the use of research and theory to inform the selection of assessment targets in clinical practice. EBA guidelines stress that the diagnostic techniques employed by mental health professionals must be supported with appropriate psychometric evidence that examines their potential accuracy. Determining the accuracy of scatter as a diagnostic sign for SLD requires the computation of sensitivity and specificity statistics from a 2 x 2 contingency table that cross-tabulates decisions made from scatter with those from a gold standard diagnosis (a sample
diagnostic contingency array is provided in Figure 1). Sensitivity is the proportion of individuals with SLD who exhibit meaningful scatter (i.e., true positive decisions). Specificity represents the proportion of individuals without SLD who are not marked with psychoeducational profiles that contain significant scatter (i.e., true negative decisions). Diagnostic accuracy is often represented as the rate of “hits” (i.e., true positive and true negative decisions) in a selected population. It is important to note that while a highly sensitive and highly specific test is desired, there is a tradeoff between sensitivity and specificity: as one increases the other decreases (McFall & Treat, 1999). However, for diagnostic tests, it has been argued that protection against making a Type I error or a false positive decision is preferred (Meehl & Rosen, 1955). Unfortunately, the potential diagnostic utility of cognitive scatter, as produced from a contemporary measure of cognitive ability, has thus far evaded empirical scrutiny.

Purpose of the Current Investigation

To address this gap in literature, the present investigation employed diagnostic utility statistics (e.g., Kessel & Zimmerman, 1993; McFall & Treat, 1999; Swets, 1998) to determine whether significant profile scatter could accurately distinguish between participants ages 6-18 in the Kaufman Assessment Battery for Children-Second Edition (KABC-II; Kaufman & Kaufman, 2004a) normative sample with (n = 107) and without (n = 2,116) a known diagnosis of specific learning disability (SLD). Given the fact that cognitive variability is endemic in the population, it is important to determine the degree to which the distributions of cognitive attributes for clinical and non-clinical groups may overlap (McGill, Styck, Palomares., & Hass, 2016).

As recommended by Youngstrom et al. (2015), Bayesian methods were also used to determine the degree to which scatter improved posterior probabilities and diagnostic likelihood ratios from *a priori* base rates of SLD prevalence in the population. It is believed that the
information furnished from this investigation will be instructive for evaluating the tenability of the claims made by Hale et al. (2008) and for advancing evidence-based assessment in clinical practice.

Method

Participants

Participants were children and adolescents ages 6 to 18 (N = 2,223) drawn from the KABC-II standardization sample. The standardization sample was obtained using stratified proportional sampling across demographic variables of age, sex, race/ethnicity, parent educational level, and geographic region. Examination of the tables in the manual (Kaufman & Kaufman, 2004b) revealed a close correspondence to the 2001 U. S. census estimates across the stratification variables.

Measurement Instrument

The KABC-II (Kaufman & Kaufman, 2004a) measures the processing and cognitive abilities of children and adolescents between the ages of 3 years and 18 years. The KABC-II features 10 core subtests, which combine to yield five first-order factor scale scores (Short-Term memory, Long-Term Storage and Retrieval, Visual Processing, Fluid Reasoning, and Crystallized Ability), and a second-order Fluid Crystallized Index (FCI) that is thought to represent psychometric g. Extensive normative and psychometric data can be found in the KABC-II manual (Kaufman & Kaufman, 2004b).

Data Analyses

Data analyses involved several steps. First, pairwise comparisons for all KABC-II factor score permutations were created in the normative dataset to determine the degree of scatter in individual cognitive profiles (i.e., difference between the highest and lowest scores). The
resulting scatter index allowed for analyses to proceed without the imposition of an arbitrary cut-point (i.e., MacCallum, Zhang, Preacher, & Rucker, 2002). A one-way analysis of variance (ANOVA) was used to determine the degree to which KABC-II scores differed between SLD and non-SLD samples. The Levine’s test of homogeneity of variances was examined to test the degree to which score variances were statistically different and the Welch approximate F test was used to evaluate the omnibus test. Next, diagnostic utility statistics (e.g., Kessel & Zimmerman, 1993) were also computed for different thresholds of scatter using the Diagnostic Utility program by Watkins (2002). A number of attributes of a test, collectively known as diagnostic efficiency statistics, can be derived from these numbers. The sensitivity of a test is defined as the proportion of people who have SLD who are detected by the test. The specificity of a test is the proportion of people without SLD who are correctly labeled by the test. Sensitivity and specificity can be combined into a single number called the likelihood ratio (LR). According to Streiner (2003), LR+ and LR- that are ≥ 1 indicate the test is useless as a rule-in/out indictor of an attribute. Positive predictive power and negative predictive power refer to the ratio of individuals who are correctly classified as having SLD based upon the presence or absence of meaningful scatter.

Because diagnostic statistics are influenced by prevalence rates, these statistics were also plotted on a receiver operating characteristic curve (ROC) and the area under the curve (AUC) was used to quantify the ROC (McFall & Treat, 1999; Swets, 1988). A nonparametric approach was used to fit the curve in SPSS version 23.0. Youngstrom (2014) recommend the following guidelines for interpreting AUC: values between 0.50 and 0.70 characterize low accuracy, values between 0.70 and 0.90 represent medium accuracy, and values between 0.90 and 1.00 characterize high accuracy. Finally, Bayesian methods were employed to construct a probability
nomogram using the evidence-based assessment framework advocated by Youngstrom and colleagues (2015).

Results

KABC-II composite and index scores from the SLD sample were significantly lower than scores from the participants without a known SLD diagnoses. Table 1 contains the means and standard deviations of all of the KABC-II index and composite scores for normative participants disaggregated by SLD condition subgroup. One-way ANOVA indicated that these score differences were all statistically significant ($p < .001$). Standardized mean differences ranged from -0.69 to -1.14 representing moderate to large effect sizes. Additionally, clinically significant levels of cognitive profile scatter were observed for both the SLD (24.4) and Non-SLD (25.2) groups as a whole.

To remove the effects of prevalence, sensitivity and 1-specificity were plotted on a ROC graph to investigate accurate SLD classification based upon the presence of profile scatter. An AUC value of 0.49 resulted when all possible cut scores were used (see Figure 1). Thus, the probability that a randomly selected normative group participant with SLD would have a higher level of cognitive profile scatter than a normative group participant without SLD fell below chance levels (Swets, 1988; Youngstrom, 2014).

Diagnostic utility statistics for increasingly higher increments of cognitive profile scatter are presented in Table 2. At all levels, diagnostic accuracy failed to exceed chance (AUCs from .47 to .51). However, negative predictive values were consistently strong suggesting that the absence of cognitive scatter may function well as a potential *rule-out* test for the presence of SLD. However, the positive predictive values at all levels of scatter (.04 to .05) were hopelessly weak indicating that scatter did not function as a useful *rule-in* test for SLD. As a result, the
posterior probability odds of an individual having SLD based upon the presence of meaningful profile scatter were no greater than the prior probability/estimated prevalence rate in the current sample (see Figure 2). That is, evaluation of scatter did not incrementally improve the probability of correct diagnosis of SLD a priori base rates of prevalence.

Discussion

In an era that stresses evidence-based practice, there is a need to emphasize the importance of using science to guide clinical assessment activities (Hunsley and Mash, 2007). Typical assessment training and practice have not kept pace with advanced in evidence-based practices due to shortcomings in clinical judgement and literature gaps about empirically supported practices. As a result, much of what clinicians do is impressionistic and prone to biases that complicate decision making in the presence of diagnostic uncertainty (Youngstrom & Van Meter, 2016). As a potential remedy, EBA has many benefits including concrete guidance on essential psychometric criteria for the use of assessment instruments and interpretive schemes.

Attempts to analyze scatter on IQ tests date back to the very inception of standardized intelligence testing and are well ensconced in the school and clinical psychology practice. However, despite their intuitive appeal and the frequency that they are stressed in popular interpretive handbooks and technical resources, researchers have found that profile analysis greatly outstrip its meager scientific support (e.g., Canivez, 2013; McGill, 2016; Kranzler et al., 2016; Watkins, 2000; Watkins, Glutting, & Youngstrom, 2005). In spite of this lacuna, proponents of these methods continue to suggest that they remain useful for individual decision making (e.g. Hale et al., 2008; Hale & Fiorello, 2004). As a consequence, the present study sought to apply the evidence-based assessment approach suggested by Youngstrom et al. (2015)
to better examine the degree to which cognitive scatter served to differentiate between individuals with and without a known diagnosis of SLD.

Although ANOVA results indicated that there were significant group differences in the cognitive scores, this outcome has little relevance at the level of the individual as cognitive profile variability is endemic in the population (Canivez, 2013; McGill, Styck, Palomres, & Hass, 2016). Despite the suggestion that significant levels of cognitive profile scatter are rare and thus worthy of additional clinical consideration (e.g., Hale & Fiorello, 2004), over half of the present sample (57%) had at least a 23-point difference between their highest and lowest index scores on the KABC-II.

As a result, diagnostic utility statistics indicated that cognitive profile scatter did not function as a useful indicator for the presence of SLD no matter which threshold (10 to 30 points) of meaningfulness is adopted a priori by a clinician. According to Stuebing et al. (2012), low sensitivity and PPV suggest that we are unlikely to find all of the observations that truly meet the definition of SLD. Furthermore, application of Bayesian methods to inform the posterior probabilities of correct diagnoses from baseline prevalence rates revealed that significant scatter did not improve the odds of correct identification in any meaningful way, or put another way, clinicians employing these methods “will spend a great deal of time conducting assessments that have a very low probability of accurately identifying true SLD” (Kranzler et al., p. 11).

However, the current study is not without limitations. First, it should be noted that SLD research is plagued by the fact that there is no acceptable diagnostic gold standard for this condition. As this is a precursor for diagnostic validity, estimating the correct hit rate for various assessment methods will at some level always represent a best guess for individuals who truly
have SLD. Also, it should be noted that the prevalence rate in the current sample (5%) is somewhat lower than the estimated prevalence rate for SLD in the population (10% to 15%). Thus, it is possible that the current results may be an artifact of under-sampling. Finally, whereas the present results indicate that consideration of scatter in aggregate lacked diagnostic utility, more focal consideration of the patterns of cognitive performance may be more useful. However, a recent empirical investigation by Kranzler et al. (2016) found similar psychometric shortcomings associated with these approaches.

Conclusion

According to Watkins, Glutting, and Youngstrom (2005), “scientific psychological practice cannot be sustained by clinical conjectures, personal anecdotes, and unverifiable personal beliefs that have consistently failed empirical validation” (p. 265). Consistent with previous research, these results suggest that despite their intuitive appeal and popularity in clinical practice, psychodiagnostic inferences generated from significant profile scatter should not be employed for SLD identification until sufficient scientific evidence is furnished to support their use in these circumstances. Practitioners who fail to heed this exhortation risk diagnostic overconfidence and in the case of SLD identification, a potentially unacceptable level of diagnostic error (Lilienfeld, Ammirati, & David, 2012; Meehl, 1978; Watkins, 2009).
References

McGill, R. J. (2016). Invalidating the full scale IQ score in the presence of significant factor score variability: Clinical acumen or clinical illusion? *Archives of Assessment Psychology, 6* (1), 49-79.

Assessment Monograph Series, 43-55.

Youngstrom, E. A. (2014). A primer on receiver operating characteristic analysis and diagnostic efficiency statistics for pediatric psychology: We are ready to ROC. *Journal of Pediatric Psychology, 39*, 204-221. doi: 0.1093/jpepsy/jst062

Table 1

Means and Standard Deviations of the KABC-II Index and FCI Scores for Participants Ages 6-18 in the Normative Sample Based Upon Known SLD Condition (N = 2,223)

<table>
<thead>
<tr>
<th>KABC-II Score</th>
<th>Non-SLD</th>
<th></th>
<th>SLD</th>
<th></th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
<td></td>
</tr>
<tr>
<td>Short-Term Memory (Gsm)</td>
<td>100.7</td>
<td>14.8</td>
<td>88.9</td>
<td>14.2</td>
<td>-0.81</td>
</tr>
<tr>
<td>Visual Processing (Gv)</td>
<td>100.5</td>
<td>14.8</td>
<td>90.7</td>
<td>13.5</td>
<td>-0.69</td>
</tr>
<tr>
<td>Long-Term Memory (Glr)</td>
<td>101.0</td>
<td>14.9</td>
<td>87.4</td>
<td>11.8</td>
<td>-1.01</td>
</tr>
<tr>
<td>Fluid Reasoning (Gf)</td>
<td>100.6</td>
<td>14.7</td>
<td>88.8</td>
<td>13.9</td>
<td>-0.82</td>
</tr>
<tr>
<td>Crystallized Ability (Gc)</td>
<td>100.6</td>
<td>14.7</td>
<td>88.6</td>
<td>13.8</td>
<td>-0.84</td>
</tr>
<tr>
<td>Fluid-Crystallized Index (g)</td>
<td>100.8</td>
<td>14.6</td>
<td>85.7</td>
<td>11.5</td>
<td>-1.14</td>
</tr>
</tbody>
</table>

Note. KABC-II = Kaufman Assessment Battery for Children-Second Edition (Kaufman & Kaufman, 2004b); g = general intelligence; Differences significant at p < .001 for all 6 score comparisons across groups based upon known SLD condition. Average cognitive profile scatter for the Non-SLD group (25.2) and SLD group (24.4) were both clinically significant.
Table 2

Diagnostic Efficiency Statistics for Different Levels of Cognitive Scatter on the KABC-II Predicting the Presence of SLD

<table>
<thead>
<tr>
<th>Scatter Level</th>
<th>AUC</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>LR+</th>
<th>LR-</th>
<th>PPV</th>
<th>NPV</th>
<th>DOR</th>
<th>IPPP</th>
<th>Accuracy</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Points</td>
<td>.501</td>
<td>.964</td>
<td>.039</td>
<td>1.00</td>
<td>.91</td>
<td>.050</td>
<td>.954</td>
<td>1.11</td>
<td>.000</td>
<td>.086</td>
<td>.000</td>
</tr>
<tr>
<td>15 Points</td>
<td>.511</td>
<td>.882</td>
<td>.140</td>
<td>1.02</td>
<td>.84</td>
<td>.051</td>
<td>.957</td>
<td>1.22</td>
<td>.001</td>
<td>.177</td>
<td>.002</td>
</tr>
<tr>
<td>23 Points</td>
<td>.498</td>
<td>.576</td>
<td>.420</td>
<td>0.99</td>
<td>1.01</td>
<td>.049</td>
<td>.949</td>
<td>0.98</td>
<td>.000</td>
<td>.428</td>
<td>.000</td>
</tr>
<tr>
<td>30 Points</td>
<td>.469</td>
<td>.243</td>
<td>.696</td>
<td>0.80</td>
<td>1.08</td>
<td>.040</td>
<td>.945</td>
<td>0.73</td>
<td>.009</td>
<td>.673</td>
<td>-.018</td>
</tr>
</tbody>
</table>

Note. AUC = area under curve, LR+ = likelihood ratio for positive test results LR- = likelihood ratio for negative test results, PPV = positive predictive value, NPV = negative predictive value, DOR = diagnostic odds ratio, IPPP = incremental validity of positive test diagnosis (Hsu, 2002), Accuracy = agreement/hit rate, K = kappa coefficient for chance agreement (Streiner, 2003).
<table>
<thead>
<tr>
<th>Test Outcome</th>
<th>Diagnostic Condition</th>
<th>SLD</th>
<th>No SLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant Scatter</td>
<td>True Positive</td>
<td>False Positive (Type I Error)</td>
<td></td>
</tr>
<tr>
<td>No Scatter</td>
<td>False Negative (Type II Error)</td>
<td>True Negative</td>
<td></td>
</tr>
</tbody>
</table>

Positive Predictive Value (PPV): Probability that scatter will be observed when SLD is present.

Negative Predictive Value (NPV): Probability that scatter is not present when SLD is not observed.

Sensitivity: Probability that there will be scatter when SLD is identified.

Specificity: Probability that there will not be scatter when SLD is not identified.

Prevalence Rate: Base rate of SLD in the sample

Accuracy: Rate at which true positives and true negatives are correctly identified

False Alarm Rate (1-Specificity): Rate at which individuals present with scatter but do not have SLD

Figure 1. Model for evaluating the degree to which scatter accurately predict specific learning disability (SLD) within a diagnostic decision framework.
Figure 2. ROC graph illustrating the comparisons of true-positive and false-positive rates from individuals with and without SLD diagnoses form the KABC-II normative sample when all possible cut scores were used.
Figure 3. Probability nomogram used to combine prior probability with likelihood ratios to estimate revised, posterior probability of SLD diagnosis using different levels of cognitive profile scatter as a positive or negative test.